M easuring and Evaluating M aintenance Pr ocess Using Rdliability, Risk, and Test M etrics

Norman F. Schneidewind, Fellow | EEE

|EEE Transactions on Software Engineering, Vol. 25, No. 6, November/December 1999, pp. 768-781.

Computer and Information Sciences and Operations Division
Nava Postgraduate School
Monterey, CA 93943, U.SA.
Voice: (831) 656-2719
Fax : (831) 656-3407
Emall: nschned@npsnavy.mil

Abdstract

In analyzing the stability of a maintenance process, it is important that it not be trested in isolation
from the rdiability and risk of deploying the software that result from applying the process.
Furthermore, we need to congder the efficiency of the test effort that is a part of the process and a
determinate of reliability and risk of deployment. The relationship between product quality and process
cgpability and maturity has been recognized as a mgor issue in software engineering based on the
premise that improvements in process will lead to higher qudity products. To this end, we have keen
investigating an important facet of process capability — Sability — as defined and evaluated by trend,
change, and shape metrics, across releases and within a release. Our integration of product and process
measurement serves the dua purpose of usng metrics to assess and predict rdiability and risk and to
evauate process sability. We use the NASA Space Shuttle flight software to illustrate our approach.

Index Terms- Maintenance process stability, product and process integration, reliability risk.

INTRODUCTION

Measuring and evauating the sability of maintenance processes is important because of the
recognized relationship between process qudity and product qudity [7]. We focus on the important
quaity factor reliability. A maintenance process can quickly become ungtable because the very act of
ingdling software changes the environment: pressures operae to modify the environment, the
problem, and the technologicd solutions. Changes generated by users and the environment and the
consequent need for adapting the software to the changes is unpredictable and cannot be
accommodated without iteration. Programs must be adaptable to change and the resultant change
process must be planned and controlled. According to Lehman, large programs are never completed,
they just continue to evolve [11]. In other words, with software, we are deding with a moving target.
Maintenance is performed continuoudy and the dability of the maintenance process has an effect on
product rdigbility. Therefore, when we andyzed the dability of the NASA Shuttle software
maintenance process, it was important to condder the rdiability of the software that the process
produces. Furthermore, we needed to consder the efficiency of the test effort that is a pat of the
process and a determinate of rdiability. Therefore, we integrated these factors into a unified modd,
which dlowed us to measure the influence of mantenance actions and test effort on the reiability of
the software. Our hypothesis was that these metrics would exhibit trends and other characteristics over
time that would be indicative of the stability of the process. Our resultsindicate that thisis the case.

We conducted research on the NASA Space Shuttle flight software to investigate a hypothesis of
measuring and evauaing maintenance dability. We used severd metrics and applied them across
releases of the software and within reeases. The trends and shapes of metric functions over time
provide evidence of whether the software maintenance process is stable We view dability as the
condition of a process that results in increasng reliability, decreasng risk of deployment, and
increasing test effectiveness. In addition, our focus is on process dtability, not code dability. We
explan our criteria for dability; describe metrics, trends, and shapes for judging stability; document
the data that was collected; and show how to apply our gpproach. Building on our previous work of
defining maintenance dability criteria and devdoping and goplying trend metrics for Stability
evaudtion [19], in this paper we review related research projects, introduce shgpe metrics for stability
evaudion, apply our change metric for multiple rdease dability evauaion, consder the functiondity
of the software product in dability evauetion, and interpret the metric results in terms of process
improvements.

Our emphasis in this paper is to propose a unified product and process measurement model for
product evauation and process stability andyss. The reader should focus on the modd principles and
not on the results obtained for the Shuttle. These are used only to illugsrate the model concepts. In
generd, different numerica results would be obtained for other gpplications that use this modd.

Firs, we review related research. Next, the concept of stability is explained and trend and shape
metrics are defined. Then, we define the data and the Shuttle application environment. This is followed
by an andyss of rdaionships amnong maintenance, reliability, test effort, and risk, both long term (i.e,
across releases) and short term (i.e, within a release), as gpplied to the Shuttle. We conclude with a
discusson of our attempts to relate product metrics to process improvements and to the functiondity
and complexity of the software.

RELATED RESEARCH AND PROJECTS

A number of useful rdated maintenance measurement and process projects have been reported in
the literature. Briand, et &, developed a process to characterize software maintenance projects [3].
They present a quditaive and inductive methodology for peforming objective project
characterizations to identify maintenance problems and needs. This methodology ads in determining
causd links between maintenance problems and flaws in the mantenance organization and process.
Although the authors have reaed ineffective maintenance practices to organizationa and process
problems, they have not made alinkage to product rdiability and process sability.

Gefen and Schneberger developed the hypothesis thet maintenance proceeds in three distinct serid
phases. corrective modification, dmilar to teding;, improvement in function within the origind
specifications, and the addition of new agpplications that go beyond the origina specifications [5].
Their results from a dngle large information system, which they dudied in grest depth, suggested that
software maintenance is a multi-period process. In the Shuttle maintenance process, in contrast, al
three types of maintenance activities are performed concurrently and are accompanied by continuous
teging.

Henry, et d, found a strong correlation between errors corrected per module and the impact of the
software upgrade [6]. This information can be used to rank modules by their upgrade impact during

3

code inspection in order to find and correct these errors before the software enters the expensive test
phase. The authors treat the impact of change but do not relate this impact to process sability.

Khoshgoftar et d used discriminant analyss in eech iteration of their project to predict fault
prone modules in the next iteration [10]. This approach provided an advance indication of reliability
and the risk of implementing the next iteration. This study dedls with product rdiability but does not
address theissue of process stahility.

Pearse and Oman applied a maintenance metrics index to measure the maintainability of C source
code before and after maintenance activities [13]. This technique dlowed the project engineers to track
the "hedth" of the code as it was being maintained. Mantainability is assessed but not in terms of
process stability.

Pigoski and Nelson collected and analyzed metrics on sze, trouble reports, change proposals,
gaffing, and trouble report and change proposal completion times [14]. A mgor benefit of this project
was the use of trends to identify the reationship between the productivity of the maintenance
organization and daffing levels Although productivity was addressed, product religbility and process
sability were not consdered.

Sneed reengineered a client maintenance process to conform to the ANSI/IEEE Standard 1291,
Standard for Software Maintenance [19]. This project is a good example of how a standard can provide
a basic framework for a process and can be talored to the characteristics of the project environment.
Although applying a standard is an appropriate element of a good process, product reliability and
process stability were not addressed.

Stark collected and analyzed metrics in the categories of customer satisfaction, cost, and schedule
with the objective of focusng management's atention on improvement aeas and tracking
improvements over time [20]. This gpproach aided management in deciding whether to include
changes in the current release, with possible schedule dippage, or incude the changes in the next
release. However, the authors did not relate these metrics to process sability.

Although there are smilarities between these projects and our research, our work differs in that we
integrate: 1) maintenance actions, 2) rdiability, 3) test effort, and 4) risk to the safety of misson and
crew of deploying the software after maintenance actions, for the purpose of andyzing and evauating
the gtability of the maintenance process.

CONCEPT OF STABILITY

TREND METRICS

To gan ingght about the interaction of the maintenance process with product metrics like
reliability, two types of metrics are andyzed: trend and shape. Both types are used to assess and
predict maintenance process dability across (long-term) and within (short-term) releases after the
software is redeased and maintained. Shape melrics are described in the next section. By
chronologicaly ordering metric vaues by release date, we obtain discrete functions in time that can be
andyzed for trends across releases. Similaly, by observing the sequence of melric vadues as
continuous functions of increesng test time, we can andlyze trends within releases. These metrics are

4

defined as empirical and predicted functions that are assigned values based on release date (long term)
or test time (short term). When andyzing trends, we note whether an increasing or decreasing trend is
favorable [15]. For example, an increasing trend in Time to Next Falure and a decreasing trend in
Failures per KLOC would be favorable. Conversdly, a decreasing trend in Time to Next Falure and an
increasing trend in Falures par KLOC would be unfavoreble. A favorable trend is indicative of
maintenance dability if the functiondity of the software has increesed with time across releases and
within releases. Increasing functiondity is the norm in software projects due to the enhancement that
users demand over time. We impose this condition because if favorable trends are observed, they could
be the result of decreesng functiondity rather than having achieved maintenance dability. When
trends in these metrics over time ae favorable (eg., increasng reliability), we conclude that the
maintenance process is stable with respect to the software metric (rdiability). Conversdy, when the
trends are unfavorable (e.g., decreasing rdiability), we conclude that process is unstable. Our research
investigated whether there were reationships among the following factors. 1) maintenance actions, 2)
reliability, and 3) test-effort. We use the following types of trend metrics

1.Maintenance actions. KLOC Change to the Code (i.e., anount of code changed necessary to add
given functiondity);

2. Rdiability: Various rdigbility metrics (eg., MTTF, Totd Falures, Remaning Failures, and Time to
Next Failure); and

3. Test effort; Totd Test Time.
Change Metric

Although looking for a trend on a grgph is useful, it is not a precise way of measuring ability,
paticularly if the graph has pesks and vdleys and the measurements are made a discrete points in
time. Therefore, we developed a Change Metric (CM), which is computed as follows:

1. Note the change in ametric from one release to the next (i.e, release | to rlease j+1).

2.a. If the change is in the dedrable direction (eg., FailuresKLOC decrease), treat the change in 1 as
positive.

b. If the change is in the undesirable direction (e.g., FailuresKLOC incresse), treat the change in 1 as
negeive.

3.a If thechangein lisanincrease, divideit by the vaue of the metric in release j+1.
b. If the changein 1 is a decrease, divide it by the value of the metric in release |.

4. Compute the average of the vaues obtained in 3, taking into account sgn. This is the change metric
(CM). The CM is a quantity in the range —1, 1. A postive vaue indicates dability; a negative vaue
indicates indtability. The numeric vaue of CM indicates the degree of dgability or ingtability. For
example, .1 would indicate marginad sability and .9 would indicate high sability. Smilarly, -. 1 would
indicate margind ingability ad -. 9 would indicate high ingability. The standard deviation of these
vaues can dso be computed. Note that CM only pertains to stability or ingtability with respect to the
particular metric that has been evaluated (eg., FaluresKLOC). The evauation of stability should be

5

made with respect to a set of metrics and not a single metric. The average of the CM for a set of
metrics can be computed to obtain an overal metric of stability.

SHAPE METRICS

In addition to trends in metrics, the shapes of metric functions provide indicators of maintenance
gability. We use shape metrics to andyze the dability of an individua release and the trend of these
metrics across releases to andyze long-term gability. The rationale of these metrics is that it is better
to reach important points in the growth of product reliability sooner than later. If we reach these points
late in teding, it is indicative of a process thet is late in achieving sability. We use the following types
of shape metrics.

1. Direction and magnitude of the dope of a metric function (eg., falure rate decreases asymptoticaly
with totd test time). Usng falure rate as an example within a reease, it is dedrable that it rapidly
decrease towards zero with increasing totd test time and that it have small vaues.

2. Percent of totd test time a which a metric function changes from ungable (eqg., increasng falure
rate) to stable (eg., decreasing failure rate) and remains stable. Across releases, t is desrable that the
tota test time at which a metric function becomes stable gets progressively smdler.

3. Percent of totd test time a which a melric function increases & a maximum rate in a favorable
direction (eg., falure rate has maximum negetive rate of change). Using falure rate as an example, it
is desrable for it to achieve maximum reate of decrease as soon as possible, as a function of total test
time.

4. Tes time a which a metric function reaches its maximum vaue (eg, tes time a which falure rate
reeches its maximum vdue). Usng falure rate as an example, it is desrable for it to reach its
maximum vaue (i.e, trangtion from ungable to stable) as soon as posshble, as a function of totd test
time.

5. Risk: Probability of not meeting religbility and safety gods (eg., time to next falure should exceed

misson duration), usng various shape melrics as indicators of risk. Risk would be low if the
conditionsin 1-4 above obtain.

METRICSFOR LONG-TERM ANALYSIS

We use cetan merics only for long-term andyss. As an example, we compute the following
trend metrics over a sequence of releases.

1. Mean Timeto Fallure (MTTF).
2. Tota Failures normalized by KLOC Change to the Code.
3. Totd Test Time normdized by KLOC Change to the Code.

4. Remaining Failures normalized by KLOC Change to the Code.

5. Timeto Next Failure.

METRICSFOR LONG-TERM AND SHORT-TERM ANALYSIS

We use other metrics for both long-term and short-term andyss. As an example, we compute the
following trend (1) and shape (2, 3, 4, and 5) metrics over a sequence of releases and within a given
release:

1. Percent of Total Test Time required for Remaining Fallures to reach a specified vaue.
2. Degree to which Failure Rate asymptotically approaches zero with increasing Totd Test Time.
3. Percent of Total Test Time required for Failure Rate to become stable and remain stable.

4. Percent of Total Test Time required for Failure Rate to reach maximum decreasing rate of change
(i.e, dopeof thefailure rate curve).

5. Maximum Fallure Rate and Tota Test Time where Fallure Rate is maximum.

DATA AND EXAMPLE APPLICATION

We use the Shuttle applicetion to illustrate the concepts. This large maintenance project has been
evolving with incressing functiondity sncel983 [2]. We use data collected from the developer of the
flight software of the NASA Space Shuttle, as shown in Table 1, which has two parts 1 and 2.This
table shows Operationd Increments (Ols) of the Shuttle: OIA... OIQ, covering the period 1983-1997.
We define an Ol as follows: a software system comprised of modules and configured from a series of
builds to meet Shuttle misson functiond requirements [16]. In Part 1, for each of the Ols, we show the
Release Date (the date of release by the contractor to NASA), Tota Post Delivery Failures, and Failure
Severity (decreasng in severity from “1” to “4”). In Pat 2, we show the maintenance change to the
code in KLOC (source language changes and additions) and the total test time of the Ol. In addition,
for those Ols with a least two falures, we show the computation of MTTF, FalluredKLOC, and Totd
Test Time/KLOC. KLOC is an indicator of maintenance actions, not functiondity [8]. Increased
functiondity, as measured by the increase in the sze of principd functions loaded into mass memory,
has averaged about 2% over the last 10 Ols. Therefore, if a stable process were observed, it could not
be atributed to decreasing functiondity. Also to be noted is that the software developer is a CMM
Leve 5 organization that has continualy improved its process.

Because the flight software is run continuoudy, around the cock, in dmulaion, test, or flight,
Totd Test Time refers to continuous execution time from the time of release. For Ols where there was
a sufficient sample sze (i.e, Totd Post Ddivery Falures) -- OIA, OIB, OIC, OID, OIE, OlJ, and OIO
-- we predicted software rdiability. For these Ols, we show Launch Date, Misson Duration, and
Rdiability Prediction date (i.e, the date when we made a prediction). Fortunately, for the safety of the
crew and misson, there have been few post ddivery falures. Unfortunately, from the standpoint of
prediction, there is a sparse sat of observed falures from which to edimae rdiability mode
parameters, particularly for recent Ols. Nevertheless, we predict rdiability prior to launch date for Ols
with as few as five falures spanning many months of maintenance and testing. In the case of OIE, we

7

predict reiability after launch because no falures had occurred prior to launch to use in the prediction
model. Because of the scarcity of falure data, we made predictions using al severity levels of falure
data This turns out to be beneficdd when making rdiability risk assessments using number of
Remaning Falures For example, rather than specifying that the number of predicted Remaning
Failures must not exceed one severity “1”, the criterion could specify that the prediction not exceed
onefalure of any type — amore conservative criterion [16].

As would be expected, the number of pre-delivery falures is much greater than the number of post
deivery falures because the software is not as maure from a rdiability dandpoint. Thus, a way
around the inaufficient sample sze of recent Ols for reiability prediction is to use pre-ddivery falures
for modd fit and then use the fitted modd to predict post-ddivery falures. However, we are not sure
that this approach is appropriate because the multiple builds in which falures can occur and the test
drategies used to atempt to crash various pieces of code during the pre-ddivery process contrast
sharply with the pod-ddivery environment of testing an integrated Ol with operationd scenarios.
Neverthdess, we are experimenting with this gpproach in order to evauate the prediction accurecy.
The results will be reported in a future paper.

Table 1-Part 1: Characteristics of Maintained Software Across Shuttle Releases

Operational Release Launch Mission Reliability Total Failure
Increment Date Date Duration Prediction Post Severity
(Days) Date Delivery
Failures
One2
A 9/1/83 No Flights 12/9/85 6 Five3
Two 2
B 12/12/83 8/30/84 6 8/14/84 10 Eight 3
Two 2
C 6/8/84 4/12/85 7 1/17/85 10 Seven 3
One4
Five2
D 10/5/84 11/26/85 7 10/22/85 12 Seven 3
E 2/15/85 1/12/86 6 5/11/89 5 One?2
Four 3
F 12/17/85 2 Two 3
Onel
G 6/5/87 3 Two 3
Twol
H 10/13/88 3 One3
I 6/29/89 3 Three 3
J 6/18/90 8/2/91 9 7/19/91 7 Seven 3
K 5/2/91 1 Onel
Onel
L 6/15/92 3 One?2
One3
M 7/15/93 1 One3
N 7/13/94 1 One3
0] 10/18/95 11/19/96 18 9/26/96 5 One2
Four 3
P 7/16/96 3 One2
Two 3
Q 3/5/97 1 One3

Table 1-Part 2: Characteristics of Maintained Software Across Shuttle Releases
Totgl
opeaona | kioc | RIS w0 oc | TRioe
(Days) Change Change
(Days)
A 80 1078 179.7 0.750 134.8
B 114 4096 409.6 0.877 359.3
C 59 4060 406.0 1.695 688.1
D 12.2 2307 192.3 0.984 189.1
E 8.8 1873 374.6 0.568 2128
F 6.6 412 206.0 0.303 624
C 6.3 3077 1025.7 0.476 4884
H 7.0 540 180.0 0.429 771
I 121 2632 877.3 0.248 2175
J 294 515 73.6 0.238 175
K 213 182 85
L 344 1337 4457 0.087 339
M 24.0 386 161
N 104 121 116
@] 153 344 68.8 0.327 225
P 73 272 90.7 0411 37.3
Q 11.0 75 6.8

RELATIONSHIPS AMONG MAINTENANCE, RELIABILITY, AND TEST EFFORT

METRICSFOR LONG-TERM ANALYSIS

We want our maintenance effort to result in increasing rdiability of software over a sequence of
releases. A greph of this rdationship over cdendar time and the accompanying CM cdculations indicate
whether the long-term maintenance effort has been successful as it reaes to reiability. In order to
measure whether this is the case, we use both predicted and actua values of metrics. We predict reiability
in advance of deploying the software. If the predictions are favorable, we have confidence that the risk is

10

acceptable to deploy the software. If the predictions are unfavorable, we may decide to delay deployment
and peform additiona ingpection and testing. Another reason for making predictions is to assess whether
the mantenance process is effective in improving reigbility and to do it sufficiently early during
maintenance to improve the maintenance process. In addition to making predictions, we collected and
andyzed higtoricad reliability data These data show in retrogpect whether maintenance actions were
successful in increasing rdiability. In addition, the test effort should not be disproportionate to the amount
of code that is changed and to the rdiability that is achieved as aresult of maintenance actions.

Mean Timeto Failure

We want Mean Time to Falure (MTTF), as computed by equation (1), to show an increasing trend
across releases, indicating increasing rdiability.

Mean Timeto Failure = Totd Test Time/Totad Number of Failures During Test (1)

Total Failures

Smilarly, we want Totd Falures (and faults), normdized by KLOC Change in Code, as computed
by equation (2), to show a decreasing trend across releases, indicating that reliability is increasing with
respect to code changes.

Tota Failuress KLOC = Total Number of Failures During Test/KLOC Change in Code onthe Ol (2)

We plot Equations (1) and (2) in Figure 1 and Figure 2, respectively, aganst Release Time of Ol.
This is the number of months snce the rdease of the Ol, udng "0" as the rdease time of OIA. We
identify the Ols at the bottom of the plots. Both of these plots use actua vaues (i.e, historicd datd). The
CM vaue for equation (1) is -0.060 indicating smdl indability with respect to MTTF and 0.087 for
equation (2) indicating smdl ability with respect to normdized Totd Falures. The corresponding
standard deviations are 0.541 and 0.442. Large variability in CM is the case in this application due to the
large variability in functiondity across releases. Furthermore, it is not our objective to judge the process
that is used in this example. Rather, our purpose in showing these and subsequent vaues of CM is to
illustrate our moddl. We use these plots and the CM to asess the long-term gtability of the mantenance
process. We show example computations of CM for equations (1) and (2) in Table 2.

Table 2: Example Computations of Change Metric (CM)
Operational MTTF Reddive Totd Rdaive
Increment (Days) Change Failures KLOC Change
A 179.7 0.750

B 409.6 0.562 0.877 -0.145

C 406.0 -0.007 1.695 -0.483

D 192.3 -0.527 0.984 0.419

E 374.6 0.487 0.568 0.423

J 73.6 -0.805 0.238 0.581

©) 68.8 -0.068 0.330 -0.272

CM -0.060 CM 0.087

11

Total Test Time

Wewant Total Test Time, normalized by KLOC Change in Code, as computed by equation (3), to
show adecreasing trend across releases, indicating that test effort is decr easing with respect to code
changes.

Totd Test Time/KLOC = Totd Test Time/KLOC Change in Code on the Ol (3)

We plot Equation (3) in Figure 3 againgt Release Time of Ol, usng actud values The CM vaue for
this plot is 0.116, with a sandard deviation of 0.626, indicating stability with respect to efficiency of test
effort. We use this plot and the CM to assess whether testing is efficient with respect to the amount of
code that has been changed.

Rdiability Predictions

Total Failures

Up to this point, we have used only actud data in the anayss. Now we expand the andyss to use
both predictions and actud data but only for the seven Ols where we could make predictions. Using the
Schneidewind Modd [1], [9], [16], [17], 18] and the SMERFS software religbility tool [4], we show
prediction equations, using 30 day time intervas, and make predictions for OIA, OIB, OIC, OID, OIE,
OlJ, and OIO. This modd or any other applicable mode may be used [1], [4].

To predict Totd Falures in the range [1,4] (i.e, falures over the life of the software), we use
equation (4):

F (¥)=a/b+Xs1 (4)

where the terms are defined as follows:

s dating timeinterva for usng fallures counts for computing parametersa and b,
a: initid falurerate,

b: rateof change of falure rate, and

Xs1:0bserved falure count in the range [1,5-1].

Now, we predict Tota Failures normdized by KLOC Change in Code. We want predicted
normalized Totd Failures to show a decreasing trend across releases. We computed a CM vaue for this
data of .115, with a standard deviation of .271, indicaing dability with respect to predicted normaized
Totd Failures.

Remaining Failures

To predict Remaining Faluresr(t) at timet, we use equation (5) [1], [9], [17]:

r(B)=F(¥)-X: (5)

Thisisthe predicted Total Failures over the life of the software minus the observed failure count at timet.

12

We predict Remaining Failures, normdize them by KLOC Change in Code, and compare them with
normaized actud Remaning Falures for saven Ols in Figure 4. We gpproximate Actud Remaining
Falures & time t by subtracting the observed falure count a time t from the observed Totd Failure count
a time T, where T >>t. The reason for this gpproach is that we are gpproximating the falure count over
the life of the software by using the falure count a time T. We want equation (5) and actua Remaining
Failures, normalized by KLOC Change in Code, to show a decreasing trend over a sequence of releases.
The CM vdues for these plots are 0.107 and 0.277, respectively, indicating sability with respect to
Remaining Failures. The corresponding standard deviations are .617 and 715.

Timeto Next Failure

To predict the Time for the Next k Fallures to occur, when the current time is t, we use equation (6)

Te(® = [(log a/(a - b(Xg¢*+ F))]) /b]- (t- s+ 1) (6)
[1], [16], [17].

Thetermsin Tg(t) have the following definitions

t. Currenttimeintervd;

Xst: Observed falure count in the range [st]; and

F: Given number of failuresto occur after interva t (eg., onefailure).

We want equation (6) to show an increasing trend over a sequence of releases. Predicted and actua
vaues are plotted for sx Ols (OIO has no falures) in Figure 5. The CM values for these plots are -0.152
and -0.065, respectivdy, indicating dight indability with respect to Time to Next Falure. The
corresponding standard deviations are .693 and .630.

We predicted values of Totd Falures, Remaining Failures, and Time to Next Failure as indicators of
the risk of operating software in the future is the predicted future reliability of software an acceptable
risk? The risk to the mission may or may be not be acceptable. If the latter, we take action to improve the
maintained product or the mantenance process We use actud vadues to messure the rdiability of
software and the risk of deploying it resulting from maintenance actions.

Summary

We summarize change metric vaues in Table 3. Overdl (i.e, average CM), the vdues indicae
margind gability. If the mgority of the results and the average CM were negetive, this would be an dert
to invedtigate the cause. The results coud be caused by: 1) greater functiondity and complexity in the
software over a sequence of releases, 2) a maintenance process that needs to be improved, or 3) a
combination of these causes.

13

Table 3: Change Metric Summary
Metric Actud Predicted
Mean Time To Failure -0.060
Tota Test Time per KLOC 0.116
Tota Failures per KLOC 0.087 0.115
Remaining Failures per KLOC 0.277 0.107
Timeto Next Falure -0.065 -0.152
Average 0.071

METRICSFOR LONG-TERM AND SHORT-TERM ANALYSIS

In addition to the long-term maintenance criteria, it is dedrable that the maintenance effort results in
increasng religdbility within each release or Ol. One way to evaluate how well we achieve this god is to
predict and observe the amount of test time that is required to reach a specified number of Remaining
Falures. In addition, we want the test effort to be effident in finding resdud faults for a given Ol.
Furthermore, number of Remaining Falures serves as an indicator of the risk involved in usng the
maintaned software (i.e, a high vaue of Remaning Falures portends a sgnificant number of resdud
faults in the code). In the andysis that follows we use predictions and actud data for a sdected Ol to
illustrate the process. OID.

Total Test Time Required for Specified Remaining Failures

We predict the Total Test Time tha is required to achieve a specified number of Remaining Failures,
rt), & timet; , by equation (7) [1], [17]:

t=[logla /(b[r(t)D]]/ b+ (s- 1) ()

We plot predicted and actual Tota Test Time for OID in Figure 6 agang given number of Remaining
Falures. The two plots have smilar shapes and show the typicd asymptotic characteristic of rdiability
(eg., Remaning Falures) versus Totd Test Time These plots indicate the posshility of big gans in
relidbility in the early pat of teding, eventudly the gains become margind as testing continues. The
figure dso shows how risk is reduced with a decrease in Remaining Falures that is accomplished with
increased testing. Predicted values are used to gauge how much maintenance test effort would be required
to achieve desred rdiability goas and whether the predicted amount of Totd Test Time is technicaly and
economicaly feasble. We use actud vadues to judge whether the maintenance test effort has been
efficient in relation to the achieved rdidbility.

Failure Rate

In the short-term (i.e., within a release), we want the Failure Rate (UMTTF) of an Ol to decrease over an
Ol's Totd Test Time indicating increasing reliability. Precticaly, we would look for a decreasing trend,
after an initid period of ingability (i.e, increesing rate as personne learn how to mantan new software). In
addition, we use various shape metrics, as defined previoudy, to see how quickly we can achieve rdidbility

14

growth with respect to test time expended. Furthermore, Fallure Rate is an indicator of the risk involved in
usng the maintained software (i.e, an increasng falure rate indicates an increasing probability of falure
with increasing use of the software).

Failure Rate = Total Number of Failures During Test/Totd Test Time (8

We plot Equation (8) for OID in Figure 7 againgt Totd Test Time since the release of OID. Figure 7 does
show that short-term sability is achieved (i.e, falure rate asymptoticaly approaches zero with increasing
Totd Test Time). In addition, this curve shows when the falure rate trangtions from undable (postive
Falure Rate) to sable (negative Falure Rate). The figure dso shows how risk is reduced with decreasing
Failure Rate as the maintenance process dtabilizes. Furthermore, in Figure 8 we plot the rate of change (i.e,
dope) of the Falure Rate of Figure 7. This curve shows the percent of Totd Test Time when the rae of
change of Falure Rate reaches its maximum negative vaue. We use these plots to assess whether we have
achieved short-term gability in the maintenance process (i.e, whether Failure Rate decreases asymptoticaly
with increasing Totd Test Time). If we obtain contrary results, this would be an dert to investigate whether
this is caused by: 1) grester functiondity and complexity of the Ol as it is being mantaned, 2) a
mai ntenance process that needs to be improved, or 3) a combination of these causes.

Another way of looking at falure rate with respect to dability and risk is the annotated Fallure Rate of
OID shown in Figure 9, where we show both the actud and predicted Falure Rates. We use equations (8)
and (9) [1] to compute the actud and predicted Failure Rates, respectively, where i is a vector of time
intervasfor i¥ sin equation (9).

f(i) = a (EXP(-b (i-s+1))) 9

A 30-day intervd has been found to be convenient as a unit of Shuttle test time because testing can last
for many months or even years. Thus this is the unit used in Figure 9, where we show the following events in
intervals, where the predictions were made at 12.73 intervals:

Rdeasetime O intervd,

Launch time 13.90 intervas,

Predicted time of maximum Falure Rate: 6.0 intervals,

Actud time of maximum Failure Rae: 7.43 intervals,

Predicted maximum Failure Rate: .5735 failures per interva, and
Actud maximum Failure Rate: .5381 failures per interva.

In Fgure 9, gability is achieved &fter the maximum falure rate occurs. Thisisat i = s (i.e. i = 6 intervas)
for predictions because equation (9) assumes a monotonically decreasing falure rate, wheress the actua

falure rate increases, reaches a maximum at 7.43 intervas, and then decreases. Once Sability is achieved,
risk decreases.

Summary

In addition to andyzing short-term dgability with these metricss we use them to andyze long-term
dability across releases. We show the results in Table 4 where the percent of Totd Test Time to achieve
rdiability growth gods is tabulated for a set of Ols, usng actud falure data, and the Change Metrics are
computed. Overdl, the vaues of CM indicate margind ingability. Interestingly, except for OID, the

15

maximum negdive rate of change of falure rae occurs when Falure Rate becomes stable, suggesting that
maximum reliability growth occurs when the maintenance process stabilizes,

Table 4: Percent of Total Test Time Required to Achieve Reliability Goals and Change Metrics (CM)
Operational One Relative Stable Relative | Maximum Failure Relative
Increment Remaining Change Failure Rate Change Rate Change Change
Failure (% Test Time) (% Test Time)
(% Test Time)
A 77.01 76.99 76.99

B 64.11 0.168 64.11 0.167 64.11 0.167

C 32.36 0.495 10.07 0.843 10.07 0.843

D 84.56 -0.617 12.70 -0.207 22.76 -0.558

E 83.29 0.015 61.45 -0.793 6145 -0.630

J 76.88 0.077 76.89 -0.201 76.89 -0.201

o] 46.49 0.395 100.00 -0.231 100.00 -0.231

CM 0.089 CM -0.070 CM -0.101

STD DEV 0.392 STD DEV 0.543 STD DEV 0.544

SHUTTLE OPERATIONAL INCREMENT FUNCTIONALITY AND PROCESS
IMPROVEMENT

Table 5 shows the mgor functions of each Ol [12] dong with the Release Date and KLOC Change
repeated from Table 1. There is a not a one-for-one relationship between KLOC Change and the
functiondity of the change because, as stated earlier, KLOC is an indicator of maintenance actions, not
functiondity. However, the software developer dates that there has been increasng software functiondity
and complexity with each OlI, in some cases with less rather than more KLOC [8]. The focus of the early
Ols was on launch, orbit, and landing. Later Ols, as indicated in Table 5, built upon this basdine
functiondity to add greater functiondity in the form of MIR docking and the Globd Pogtiond System,
for example. Table 6 shows the process improvements that have been made over time on this project,
indicating continuous process improvement across rel eases.

The dability anadyds that was peformed yidded mixed results about hdf are favorable and half are
unfavorable. Some variability in the results may be due to gaps in the data caused by Ols that have
experienced insufficient falures to permit datisical anadyss. Also, we note that the vdues of CM ae
margind for both the favorable and unfavorable cases. Although there is not pronounced dability neither
is there pronounced ingtability. If there were consstent and large negative vaues of CM, it would be
cause for darm and would suggest the need to perform a thorough review of the process. This is not the
case for the Shuttle. We suspect but cannot prove tha in the absence of the process improvements of
Table 6, the CM vaues would look much worse. It is very difficult to associate a specific product
improvement with a specific process improvement. A controlled experiment would be necessary to hold
al process factors congtant and observe the one factor of interest and its influence on product quaity. This
is infeesble to do in indudrid organizations. However, we suggest tha in the aggregate a series of
process improvements is beneficid for product qudity and that a set of CM vaues can serve to highlight
possible process problems.

16

Table 5: Shuttle Operationd Increment Functiondity

Operationd | Release KLOC Operationd Increment Function
Increment Date Change

A 9/1/83 8.0 Redesign of Main Engine Controller.

B 12/12/83 114 Payload Re-manifest Capabilities.

C 6/8/84 59 Crew Enhancements.

D 10/5/84 12.2 Experimenta Orbit Autopilot. Enhanced Ground Checkout.
E 2/15/85 8.8 Western Test Range. Enhance Propellant Dumps.

F 12/17/85 6.6 Centaur.

G 6/5/87 6.3 Post 51-L (Chdlenger) Safety Changes.

H 10/13/88 7.0 System Improvements.

I 6/29/89 12.1 Abort Enhancements.

J 6/18/90 29.4 Extended Landing Sites. Trans-Atlantic Abort Code Co-

Residency.
K 21.3 Redesigned Abort Sequencer.
5/21/91 One Engine Auto Contingency Aborts.
Hardware Changes for New Orbiter.

L 6/15/92 34.4 Abort Enhancements.

M 7/15/93 24.0 On-Orbit Changes.

N 7/13/94 10.4 MIR Docking. On-Orhit Digital Autopilot Changes.
o] 10/18/95 15.3 Three Engine Out Auto Contingency.

P 7/16/96 7.3 Performance Enhancements.

Q 3/5/97 11.0 Single Globd Pogtioning System.

Table 6: Chronology of Process Improvements
Y ear in which Process
Improvement Introduced Process Improvement

1976 Structured Flows

1977 Forma Software Inspections

1978 Formal Inspection Moderators

1980 Formalized Configuration Control

1981 I nspection Improvements

1982 Configuration Management Database

1983 Oversight Andyses
Build Autometion

1984 Formalized Requirements Analysis
Quarterly Qudity Reviews

1985 Prototyping
| ngpection Improvements

1986 Forma Requirements Inspections

1987 Process Applied to Support Software
Reconfiguration Certification

1988 Reliability Modeling and Prediction

1989 Process Maturity Measurements

1990 Formdized Traning

1992 Software Metrics
CONCLUSIONS

17

As gated in the Introduction, our emphasis in this paper was to propose a unified product and process
measurement mode for both product evaluation and process sability andyss. We were less interested in
the results of the Shuttle dability andyss, which were used to illustrate the modd concepts. We
conclude, based on both predictive and retrospective use of rdidbility, risk, and tet metrics, that it is
feasble to measure and assess both product quality and the stability of a maintenance process. The mode
is not domain specific. Different organizations may obtain different numerica results and trends than the

ones we obtained for the Shuttle.

18

Acknowledgments

We acknowledge the support provided for this project by Dr. William Far, Navad Surface Warfare
Center; Mr. Ted Kdler of IBM; and Ms. Patti Thornton and Ms. Julie Barnard of United Space Alliance.
We aso wish to thank the anonymous reviewers for their helpful comments.

References

[1] Recommended Practice for Software Rdiability, R-013-1992, American Nationd Standards
Inditute/American Inditute of Aeronautics and Adtronautics, 370 L'Enfant Promenade, SW, Washington,
DC 20024, 1993.

[2] C. Billings, & d, "Journey to a Mature Software Process’, IBM Systems Journd, Vol. 33, No. 1, 1994,
pp. 46-61.

[3] Liond C. Briand, Victor R. Basli, and Yong-Mi Kim, "Change Andyss Process to Characterize
Software Maintenance Projects’, Proceedings of the Internationd Conference on Software Maintenance,
Victorig, British Columbia, Canada, September 19-23, 1994, pp. 38-49.

[4] William H. Far and Oliver D. Smith, Satisticd Modding and Esimation of Rdiability Functions for
Software (SMERFS) Users Guide, NAVSWC TR-84-373, Revison 3, Naval Surface Weapons Center,
Revised September 1993.

[5] David Gefen and Scott L. Schneberger, The Non-Homogeneous Maintenance Periods. A Case Study
of Software Modifications’, Proceedings of the International Conference on Software Maintenance,
Monterey, Caifornia, November 4-8, 1996, pp. 134-141.

[6] Jod Henry, Sdlie Henry, Dennis Kafura, and Lance Matheson, "Improving Software Maintenance at
Martin Mariettd', |EEE Software, Vol. 11, No.4, July 1994, pp. 67-75.

[7] Craig Hollenbach, et d, “Combining Quadity and Software Improvement”, Communications of the
ACM, Val. 40, No.6, June 1997, pp. 41-45.

[8] Private communication with Ted Kdler, IBM, April 1998.

[9] Ted Keler, Norman F. Schneidewind, and Petti A. Thornton "Predictions for Increasing Confidence in
the Rdiability of the Space Shuttle Fight Software', Proceedings of the AIAA Computing in Aerospace
10, San Antonio, TX, March 28, 1995, pp. 1-8.

[10] Taghi M. Khoshgoftaar, Edward B. Allen, Robert Hastead, and Gary P. Trio, "Detection of Fault-
Prone Software Modules During a Spird Life Cycé€', Proceedings of the International Conference on
Software Maintenance, Monterey, California, November 4-8, 1996, pp. 69-76.

[11] Mer M. Lehman, “Programs, Life Cycles, and Laws of Software Evolution”, Proceedings of the
|IEEE, Vol. 68, No. 9, September 1980.

[12] “ Software Release Schedules’, Lockheed Martin, January 30, 1998.

19

[13] Troy Pearse and Paul Oman, "Maintainability Measurements on Industrid Source Code Maintenance
Activities', Proceedings of the International Conference on Software Maintenance, Opio (Nice), France,
October 17-20, 1995, pp. 295-303.

[14] Thomas M. Pigoski and Lauren E. Neson, "Software Maintenance Metrics A Case Study",
Proceedings of the Internationd Conference on Software Maintenance, Victoria, British Columbia,
Canada, September 19-23, 1994, pp. 392-401.

[15] Norman F. Schneidewind, "Measuring and Evauating Maintenance Process Usng Rdiadility, Risk,
and Test Metrics’, Proceedings of the Internationd Conference on Software Maintenance, Bari, Itay,
October 2, 1997, pp. 232-239.

[16] Norman F. Schneidewind, "Rdiability Modding for Safety Criticdl Softwar€’, |IEEE Transactions on
Reliability, Vol. 46, No.1, March 1997, pp.88-98.

[17] Norman F. Schneidewind, "Software Reigbility Modd with Optima Sdection of Falure Datd’,
|EEE Transactions on Software Engineering, Val. 19, No. 11, November 1993, pp. 1095-1104.

[18] Norman FE Schneidewind and T. W. Kdler, "Application of Reliability Modes to the Space Shuittle”,
|[EEE Software, Val. 9, No. 4, July 1992 pp. 28-33.

[19] Hary Sneed, "Moddling the Maintenance Process a Zurich Life Insurance’, Proceedings of the
International Conference on Software Maintenance, Monterey, Cdifornia, November 4-8, 1996, pp. 217-
226.

[20] George E. Stark, "Messurements for Managing Software Maintenance’, Proceedings of the
International Conference on Software Maintenance, Monterey, Caifornia, November 4-8, 1996, pp. 152-
161.

Dr. Norman F. Schneidewind is Professor of Information Sciences and Director of the Software Metrics
Research Center at the Naval Postgraduate School. He is the developer of the Schneidewind software
religbility modd that has been used by NASA to assig in the prediction of software rdiability of the
Space Shuttle -- one of the modes recommended by the American Nationd Standards Ingtitute and the
American Inditute of Aeronautics and Astronautics Recommended Practice for Software Rdiability. Dr.
Schneidewind is a Fellow of the IEEE, eéected for "contributions to software measurement modes in
reliability and metrics, and for leadership in advancing the fidd of software maintenance’. In 1992 and
1998 he received an award for outstanding research achievements by the Nava Postgraduate School. In
1993 he received the IEEE Computer Society's Outstanding Contribution Award "for work leading to the
edablishment of IEEE Standard 1061-1992'. In addition, he received the IEEE Computer Society
Meritorious Service Award “"for his long-term committed work in advancing the cause of software
engineering standards’. He was recognized for his contributions to the IEEE Computer Society by being
named to the "Golden Core" of volunteers.

!lh FII!‘I [DI&}

Mgan TIm
2

Figure 1. Memn Time To Fallure Acruss Relesses

L] 34 Lk |

Menthi Eise Raldsue of First Ol

B

C

nr

D

178

E

J

o

Figure 3. Total Test Time per KLOC Across Releases

0 34

OlA B

9.3 13.2 175 276 45.2 61.4 70 81.6 92.1 105.5118.5130.4145.6 154.5167.1

cC D

Months Since Release of First Ol

E F

G

H

J

K

L

M N

o P

Q

20

Fgure 2. Total Faiures per KLOC Across Releases

iy
o

o
o

Total Faliures Per KLOG Ghange

0 34 927 1317 175 816 1456
Months Since Release of First Ol
aA B C D E J (0]

Figure 4. Reliability of Maintained Software -- Remaining Failures
Normalized by Change to Code

. Actual

=

|:| Predicted

08

0.6

Normulized Rermwining Falkave

0 34 9.27 13.17 175 816 145.6
Months Since Release of First Ol

O A B C D E J o]

N
o

4]

(&)]

Tine H-t!-lm._‘ﬂ Mylnh_‘\aﬂ)
o

o

Figure 5. Reliability of Maintained Software -- Time to Next Failure
O predicted (vy) W Actual (v2)

0

[in

3.4

9.27 13.17 175 81.6
Months Since Release of First Ol

Failures par Day

ol A

0.020 4

0.018 1

0.016 1

0.014 4

0.012 1

0.010 4

0.008 1

0.006 1

0.004 1

0.002 1

B

Figure 7. OID Failure Rate

C D E J

Unstable

Stable

Decreasing Risk ———»

0.000

5.9

6.29

7.41 9.67 127 16.56 22.76 30.82

Percent of Total Test Time

58.73 75.77 8457

100

Figure 6. Tota Test Time to Achieve Remaining Failures

Total Tast Tima (30 Day intorvals)

80~

6(

Operational Increment OID

+, Actud

«,
a
.
-
o
D

< Decreasing Risk

21

1 2 3 4 5 6

Number of Remaining Failures

Figure 8. OID Rate of Change of Failure Rate

8.00

7.007

6.007

5.001

4.00

3.001

2.007

1.00

0.00

Stahle When Nenative

-1.00

6 13 20 27 34 41 48 55 62 69 76 83 90 97

Percent of Total Test Time

Failure Rate (Failuresper 30 Day Interval)

0.8}

0-7 :

0.1]

Figure9. OID Failure Rate
Predicted Versus Actual

Actual
Predicted

o
S
.—-~...
-

0O 10 20 30 40 50 60 70

Total Test Time (30 Day Intervals)

80

22

